Strictly positive definite kernels on subsets of the complex plane
نویسندگان
چکیده
In this paper we seek for inner product dependent strictly positive definite kernels on subsets of C. We present separated necessary and sufficient conditions in order that a positive definite kernel on C be strictly positive definite. One emphasis is on strictly positive definite kernels on the unit circle. Since positive definite kernels on the circle were already characterized in [1], the study in this case reduces to the determination of what kind of positive definite kernels are indeed strictly positive definite. For other subsets, we begin with a quite general positive definite kernel on the whole C and find conditions in order that it is strictly positive definite on the subset. For some classes of subsets, the results are final.
منابع مشابه
Strictly Positive-Definite Spike Train Kernels for Point-Process Divergences
Exploratory tools that are sensitive to arbitrary statistical variations in spike train observations open up the possibility of novel neuroscientific discoveries. Developing such tools, however, is difficult due to the lack of Euclidean structure of the spike train space, and an experimenter usually prefers simpler tools that capture only limited statistical features of the spike train, such as...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملReal and complex variable positive definite functions
In this paper we present an overview of the implications of our previously derived results for positive definite kernels on the general theory of positive definite functions. We begin by exploring the consequences of a set of differential inequalities on the global behaviour of a smooth positive definite function of one real variable. Then we propose a natural extension of this study to the com...
متن کاملStrictly positive definite functions on spheres in Euclidean spaces
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملStrictly Positive Definite Functions on Spheres
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 51 شماره
صفحات -
تاریخ انتشار 2006